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Gentle Intro:
Features of Distributed Systems

• Complex Software Systems, in particular Distributed Systems,
are everywhere around us.

• Systems are highly mobile and dynamic: programs or devices
move and new devices or pieces of software are added.

• Systems are heterogeneous and open: pieces using different
infrastructures and only partial knowledge of the system.

• Systems are designed as structured composition of
computational units called components.

• Giving rise to Component-Based Ubiquitous Systems (CBUS)



Gentle Intro:
Features of Distributed Systems

• Complex Software Systems, in particular Distributed Systems,
are everywhere around us.

• Systems are highly mobile and dynamic: programs or devices
move and new devices or pieces of software are added.

• Systems are heterogeneous and open: pieces using different
infrastructures and only partial knowledge of the system.

• Systems are designed as structured composition of
computational units called components.

• Giving rise to Component-Based Ubiquitous Systems (CBUS)



Gentle Intro:
Features of Distributed Systems

• Complex Software Systems, in particular Distributed Systems,
are everywhere around us.

• Systems are highly mobile and dynamic: programs or devices
move and new devices or pieces of software are added.

• Systems are heterogeneous and open: pieces using different
infrastructures and only partial knowledge of the system.

• Systems are designed as structured composition of
computational units called components.

• Giving rise to Component-Based Ubiquitous Systems (CBUS)



Gentle Intro:
Features of Distributed Systems

• Complex Software Systems, in particular Distributed Systems,
are everywhere around us.

• Systems are highly mobile and dynamic: programs or devices
move and new devices or pieces of software are added.

• Systems are heterogeneous and open: pieces using different
infrastructures and only partial knowledge of the system.

• Systems are designed as structured composition of
computational units called components.

• Giving rise to Component-Based Ubiquitous Systems (CBUS)



Gentle Intro:
Features of Distributed Systems

• Complex Software Systems, in particular Distributed Systems,
are everywhere around us.

• Systems are highly mobile and dynamic: programs or devices
move and new devices or pieces of software are added.

• Systems are heterogeneous and open: pieces using different
infrastructures and only partial knowledge of the system.

• Systems are designed as structured composition of
computational units called components.

• Giving rise to Component-Based Ubiquitous Systems (CBUS)



Distributed Systems in Practice

When reasoning about complex distributed systems,
reliability and usability are of paramount importance.

1 Reliability: Systems need to account for safe dynamic
reconfiguration, namely changing at runtime the
communication patterns.

2 Usability: Components perform communication among
each-other, following predefined patterns or protocols.
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Problem Description

We are interested in guaranteeing consistency and safety of CBUS.

1 Guaranteeing consistency of dynamic reconfigurations is a
challenging task. It is difficult to ensure that modifications
will not disrupt ongoing communications.

2 Guaranteeing safety of communications means a collection of
several requirements.

• privacy
• communication safety
• deadlock-freedom
• livelock-freedom
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Aim of the Ph.D. Dissertation

To develop powerful techniques based on formal methods for the
verification of correctness, consistency and safety properties
related to dynamic reconfigurations and communications in

complex distributed systems.



Approach

Static analysis based on Types and Type Systems. Why?

1 Types and Type Systems for safety properties.

• concurrent programming: types for processes in the π-calculus
• guarantee deadlock-freedom, livelock-freedom.

2 Types and Type Systems for communication.

• ranging from standard channel types to behavioural types, like
session types.

• guarantee privacy, communication safety, session fidelity.
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Contribution of the Ph.D. Dissertation

i) We design a type system for a component-based calculus,
to statically ensure consistency of dynamic reconfigurations.

ii) We define an encoding of the π-calculus with session types
into the standard typed π-calculus,
to understand the expressive power of session types.

iii) We relate the notions of deadlock-freedom, livelock-freedom,
progress defined in different calculi via the encoding.



Importance of the Contribution

i) Type System for Components:

1 Guarantees safe dynamic reconfiguration.
2 Shifts checks from runtime to compile time.

ii) Encoding of Session π-calculus:

1 Reusability of existing theory of the standard typed π-calculus.
2 Robustness by subtyping, polymorphism, HO and recursion.
3 Expressivity result for session types: not many results on types.

iii) Progress by Encoding:

1 Gives a systematic way of understanding the notions of
deadlock-freedom, livelock-freedom, progress.

2 Encoding relates notions defined in different calculi.
3 Gives a new technique for guaranteeing progress.
4 More accurate analysis for progress property.



Publications

i) Session Types Revisited. O. Dardha, E. Giachino and
D. Sangiorgi. In Proc. of PPDP’12, pp 139–150, ACM, 2012.

ii) A Type System for Components. O. Dardha, E. Giachino and
M. Lienhardt. In Proc. of SEFM’13, pp 167–181, Springer
LNCS, 2013.

iii) Progress as Compositional Lock-Freedom. M. Carbone,
O. Dardha and F. Montesi. To appear in
COORDINATION’14, Springer LNCS, 2014.



In the remainder...

• Safe Dynamic Reconfiguration

• Safe Communication by Encoding

• Progress of Communication



Safe Dynamic Reconfiguration



Component-Based Calculus

• Asynchronous Object Communication
• Asynchronous method calls: x = o!m(args)
• Primitives to test and fetch the returned value.

• Concurrent Object Groups - cog
• Cooperating Objects sharing the processor; only one task

active at time.
• A group’s activity consists of a set of tasks, created by

asynchronous method calls on objects of the group;
• new cog C() creates a new object in a new group.

• Dynamic Reconfiguration
• rebind o.p = o′ operation of ports of objects.



Component-Based Calculus in Practice:
Clients, Server and Controller

...

Client c1 = new Client (s);
Client c2 = new cog Client (s);
Ctrl c = new Ctrl(c1,c2)!updateServer(snew);

...

Unit updateServer(Server snew) {

rebind c1.s = snew;
rebind c2.s = snew;

}



A Type System for Components

• Goal of the Type System

1 check rebind performed internally to a cog.
2 check synchronous method call performed internally to a cog.

• How do we do it?
Statically track cogs identity and membership to a cog.
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Component-Based Calculus in Practice:
Clients, Server and Controller

...

Client c1 = new Client (s);← G
Client c2 = new cog Client (s); ← G′

Ctrl c = new Ctrl(c1,c2)!updateServer(snew);← G

...

Unit updateServer(Server snew) {

rebind c1.s = snew; ok
rebind c2.s = snew; x

}



Properties of the Type System for Safe
Dynamic Reconfiguration

Theorem (Main Result)

Well-typed programs do not perform

i) illegal rebinding

ii) illegal synchronous method call



Safe Communication by Encoding



Session Types in Practice: Equality Test

server
def
= x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0

client
def
= y !〈3〉.y !〈5〉.y?(eq).0

The system is given by

(νxy)
(
server | client

)

Where
x : ?Int.?Int.!Bool.end

and
y : !Int.!Int.?Bool.end



Session Types in Practice: Equality Test

server
def
= x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0

client
def
= y !〈3〉.y !〈5〉.y?(eq).0

The system is given by

(νxy)
(
server | client

)
Where

x : ?Int.?Int.!Bool.end

and
y : !Int.!Int.?Bool.end



Session Types in Practice: Equality Test

server
def
= x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0

client
def
= y !〈3〉.y !〈5〉.y?(eq).0

The system is given by

(νxy)
(
server | client

)
Where

x : ?Int.?Int.!Bool.end

and
y : !Int.!Int.?Bool.end



Session Types in Practice: Equality Test

server
def
= x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0

client
def
= y !〈3〉.y !〈5〉.y?(eq).0

The system is given by

(νxy)
(
server | client

)
Where

x : ?Int.?Int.!Bool.end

and
y : !Int.!Int.?Bool.end



Session Types in Practice: Equality Test

server
def
= x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0

client
def
= y !〈3〉.y !〈5〉.y?(eq).0

The system is given by

(νxy)
(
server | client

)
Where

x : ?Int.?Int.!Bool.end

and
y : !Int.!Int.?Bool.end



Session Types in Practice: Equality Test

server
def
= x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0

client
def
= y !〈3〉.y !〈5〉.y?(eq).0

The system is given by

(νxy)
(
server | client

)
Where

x : ?Int.?Int.!Bool.end

and
y : !Int.!Int.?Bool.end



Session Types in Practice: Equality Test

server
def
= x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0

client
def
= y !〈3〉.y !〈5〉.y?(eq).0

The system is given by

(νxy)
(
server | client

)
Where

x : ?Int.?Int.!Bool.end

and
y : !Int.!Int.?Bool.end



Session Types vs. Standard π- Types

• Session types are structured x : ?Int.?Int.!Bool.end;

• Standard π- channel types specify the type of the carried
value: x : `i [Int] or x : `o [Int].

• Encoding is based on:

1 Linearity of π- calculus channel types;

2 Input/Output channel capabilities;

3 Continuation-Passing principle.



Encoding Session Types

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]



Encoding Session Types

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]



Encoding Session Types

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]



Encoding Session Types

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]



Encoding Session Types

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]



Properties of the Encoding

Theorem (On types)

Encoding preserves typability of programs.

Theorem (On reductions)

Encoding preserves evaluation of programs.
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Advanced Features on Safety by Encoding

Does the encoding handle extensions? Extend the calculi with:

• Subtyping

• Polymorphism

• Higher-Order

• Recursion

Theorems ‘On types’ and ‘On reductions’ still hold.
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Progress of Communication



Comparing Properties of Communication

• Deadlock-Freedom: communications eventually succeed,
unless the whole process diverges. (Standard π)

• Livelock-Freedom: communications eventually succeed even if
the whole process diverges. (Standard π)

• Progress: each session, once started, is guaranteed to satisfy
all the requested interactions. (Session π)



What can we say about Progress?

Theorem
Progress is a compositional form of livelock-freedom property.

• We use the encoding to relate progress in the session π-
calculus to livelock-freedom in the standard π- calculus.

• Reusability of type system and tools for livelock-freedom.

• More accurate analysis of the progress property.



Progress in Practice: “Bad” Process

Consider

(νab)(νcd)
(
a?(z).d!〈z〉 | c?(w).b!〈w〉

)

By encoding we obtain the process:

(νx)(νy)
(
x?(z).y !〈z〉 | y?(w).x!〈w〉

)

The type system for livelock-freedom rejects it!
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Progress in Practice: “Good” Process

Consider the process

(νab)
(
b!〈1〉 | (νcd)

(
d!〈1〉 | c?(y).a?(z)

))

By the encoding we obtain the process:

(νk)
(
k!〈1〉 | (νt)

(
t!〈1〉 | t?(y).k?(z)

) )

The type system for livelock-freedom accepts it!
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Conclusions and Future Work 1/2

• Problem: guaranteeing consistency and safety properties in
distributed programs.

• Approach: types and type systems.

i) Type system for safe dynamic reconfiguration in a concurrent
object-oriented language for distributed systems.

ii) Encoding of session π- calculus into standard typed π- calculus
permitting large reusability of existing theory and properties.

iii) Progress in session π- calculus as livelock-freedom in standard
typed π- calculus via encoding.
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Conclusions and Future Work 2/2

• Type System for Components relevant in practice: designed
for component-extension of ABS used in HATS and Envisage.

• Encoding of Session Types relevant for BETTY and ABCD.

• Extend the encoding to more general settings than dyadic
session types, in particular multiparty session types.

• Session Types in Practice (ABCD)

• Tool for progress property in session types. Progress in more
general settings.



Thank You!!
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Component Extension of Core ABS 1/2

P ::= Dl { s }
Dl ::= D | F | I | C

T ::= V | D[〈T 〉] | (I, r)

r ::= ⊥ | G[f : T ] | α | µα.r

D ::= data D[〈T 〉] = Co[(T )]|Co[(T )];

F ::= def T fun[〈T 〉](T x) = e;

I ::= interface I [extends I] { port T x ; S }
C ::= class C[(T x)] [implements I] { Fl M }
Fl ::= [port] T x

S ::= [critical] (G, r) T m(T x)
M ::= S { s }



Component Extension of Core ABS 1/2

s ::= skip | s ; s | T x | x = z | await g
| if e then s else s | while e { s } | return e
| rebind e.p = z | suspend

z ::= e | new [cog] C (e) | e.m(e) | e!m(e) | get(e)
e ::= v | x | fun(e) | case e {p ⇒ ep} | Co[(e)]
v ::= true | false | null | Co[(v)]
p ::= | x | null | Co[(p)]
g ::= e | e? | ‖e‖ | g ∧ g



Standard π- types

τ ::= ∅[T̃ ] channel with no capability

`i [T̃ ] linear input

`o [T̃ ] linear output

`][T̃ ] linear connection

T ::= τ linear channel type
〈li Ti 〉i∈I variant type
]T standard channel type
Bool boolean type
· · · other constructs



Session Types

q ::= lin | un qualifiers

p ::= !T .U send
?T .U receive
⊕{li : Ti}i∈I select
&{li : Ti}i∈I branch

T ::= q p qualified pretype
end termination
Bool boolean type



Encoding of session types

JendK def
= ∅ [] (E-End)

J!T .UK def
= `o [JT K, JUK] (E-Out)

J?T .UK def
= `i [JT K, JUK] (E-Inp)

J⊕{li : Ti}i∈I K
def
= `o [〈li JTiK〉i∈I ] (E-Select)

J&{li : Ti}i∈I K
def
= `i [〈li JTiK〉i∈I ] (E-Branch)



Encoding of session processes

J0Kf
def
= 0 (E-Inaction)

Jx!〈v〉.PKf
def
= (νc)fx !〈v , c〉.JPKf,{x 7→c} (E-Output)

Jx?(y).PKf
def
= fx?(y , c).JPKf,{x 7→c} (E-Input)

Jx / lj .PKf
def
= (νc)fx !〈lj c〉.JPKf,{x 7→c} (E-Selection)

Jx . {li : Pi}i∈I Kf
def
= fx?(y). case y of {li c . JPiKf,{x 7→c}}i∈I (E-Branching)

Jif v then P else QKf
def
= if fv then JPKf else JQKf (E-Conditional)

JP | QKf
def
= JPKf | JQKf (E-Composition)

J(νxy)PKf
def
= (νc)JPKf,{x ,y 7→c} (E-Restriction)



Subtyping in standard π- calculus

(Sπ- Refl)
T ≤ T

T ≤ T ′ T ′ ≤ T ′′

(Sπ- Trans)
T ≤ T ′′

T̃ ≤ T̃ ′
(Sπ- ii)

`i [T̃ ] ≤ `i [T̃ ′]

T̃ ′ ≤ T̃
(Sπ- oo)

`o [T̃ ] ≤ `o [T̃ ′]

I ⊆ J Ti ≤ T ′j ∀i ∈ I
(Sπ- Variant)

〈li Ti 〉i∈I ≤ 〈lj T ′j 〉j∈J



Polymorphism

Example of polymorphism in the π- calculus with/without sessions:

x : !〈X ;D〉.end , y : ?〈X ;D〉.end
` x!〈Int; 5〉 | y?(z). open z as (X ;w) in nj!〈w〉
−→ open 〈Int; 5〉 as (X ;w) in nj!〈w〉
−→ nj!〈5〉



Semantics of Bounded Polymorphism

(νxy)(x / lj(B).P | y . {li (Xi <: Bi ) : Pi}i∈I | R)→
(νxy)(P | Pj [B/Xj ] | R) j ∈ I

case lj(B) v of {li (Xi ≤ Bi ) xi . P}i∈I → Pj [B/Xj ][v/xj ] j ∈ I



Higher-order constructs

σ ::= T general type
♦ process type

T ::= Unit unit type
T → σ functional type

T
1→ σ linear functional type

P ::= PQ application
v values

v ::= λx : T .P abstraction
? unit value



Encoding Higher-Order

JT 1→ σK def
= JT K 1→ σ

JT → σK def
= JT K→ σ

Jλx : T .PKf
def
= λx : JT K.JPKf

JPQKf
def
= JPKf JQKf

Where σ ::= T | ♦



On progress for sessions

Definition (Progress)

A process P has progress if for all C [·] such that C [P] is well-typed,
C [P]→∗ E [R] (where R is an input or an output) implies that
there exist C′ [·], E ′ [·][·] and R ′ such that C′ [E [R]]→∗ E ′ [R][R ′]
and R ./{x ,y} R

′ for some x and y such that (νxy) is a restriction
in C′ [E [R]].



Results for Progress

Theorem (Progress ⇔ Lock-freedom)

Let P be a well-typed closed process. Then P is livelock-free if and
only if P has progress.

Theorem (Progress ⇔ Closed Lock-Free)

If P is well-typed then P has progress if and only if close(P) is
livelock-free.



Typing Progress

1: procedure Progress(Γ,P)
2: Check Γ ` P
3: Build close(P) from Γ
4: Encode Jclose(P)Kf = P′

5: return TyPiCal(P ′)
6: end procedure


